Dynamic Fluid Flow in Heterogeneous Porous Media and through a Single Fracture with Rough Surfaces

نویسندگان

  • Xiaomin Zhao
  • C. H. Cheng
  • Xiaoming Tang
  • M. Nafi Toksoz
چکیده

This study investigates the frequency-dependence of fluid flow in heterogeneous porous media using the theory of dynamic penneability and a finite-difference method. Given a penneability distribution, the dynamic penneability is applied locally to calculate the frequency-dependence of fluid flow at each local point. An iterative Alternating Direction Implicit finite-difference technique is applied to calculate the flow field in the frequency domain. We compare the flow through a 2-D heterogeneous porous medium and that through an equivalent homogeneous medium and find that the two media do not behave equivalently as a function of frequency. At very low-frequencies, the heterogeneous medium is less conductive than the homogeneous medium, However, in the transition region from quasi-static to dynamic regimes, the fonner medium becomes more conductive than the latter medium, with the ratio of the fonner flow over the latter flow reaching a maximum in this region. The larger the scale, or the higher the degree of the heterogeneity, the higher this maximum is. This finding is important for studying the interaction of a borehole stoneley wave with a heterogeneous porous fonnation. The finite-difference technique is also applied to simulate frequency-dependent flow through a single fracture with rough surfaces. It is shown that the fiow exhibits strong frequency-dependence even for small fractures with contacting surfaces. The amount of flow through the fracture is reduced by the surface roughness .

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Absolute Permeability Calculation by Direct Numerical Simulation in Porous Media

Simulating fluid flow at micro level is an ongoing problem. Simplified macroscopic flow models like Darcy’s law is unable to estimate fluid dynamic properties of porous media. The digital sample reconstruction by high resolution X-ray computed tomography scanning and fluid-dynamics simulation, together with the increasing power of super-computers, allow to carry out pore-scale simulations throu...

متن کامل

Comparison of Thermal Dispersion Effects for Single and two Phase Analysis of Heat Transfer in Porous Media

The present work involves numerical simulation of a steady, incompressible forcedconvection fluid flow through a matrix of porous media between two parallel plates at constanttemperature. A Darcy model for the momentum equation was employed. The mathematical model forenergy transport was based on single phase equation model which assumes local thermal equilibriumbetween fluid and solid phases. ...

متن کامل

Experimental Investigation of the Permeability and Inertial Effect on Fluid Flow through Homogeneous Porous Media

The value of the permeability in fluid flow through porous media is important for process investigation. In low Reynolds number, the classic Darcy’s law is suitable for simulation of fluid flow. In this paper, an experimental study for evaluation of preformed fiber permeability has been done. Also, the deviations from the classical Darcy law by experimental and numerical simulation of the N...

متن کامل

A Novel Combinatorial Approach to Discrete Fracture Network Modeling in Heterogeneous Media

Fractured reservoirs contain about 85 and 90 percent of oil and gas resources respectively in Iran. A comprehensive study and investigation of fractures as the main factor affecting fluid flow or perhaps barrier seems necessary for reservoir development studies. High degrees of heterogeneity and sparseness of data have incapacitated conventional deterministic methods in fracture network modelin...

متن کامل

Dynamic Analysis of Porous Media using Generalized Plasticity Model and Non-Darcy Flow Rule

Biot equations that consider fluid and soil interaction at the same time are the most applicable relationships in the soil dynamic analysis. However, in dynamic analysis, due to the sudden increase in the excess pore pressure caused by seismic excitation and the occurrence of high hydraulic gradients, the assumption of the Darcy flow used in these equations is questionable. In the present study...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012